Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
JAMA ; 329(6): 482-489, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2310661

ABSTRACT

Importance: Influenza virus infections declined globally during the COVID-19 pandemic. Loss of natural immunity from lower rates of influenza infection and documented antigenic changes in circulating viruses may have resulted in increased susceptibility to influenza virus infection during the 2021-2022 influenza season. Objective: To compare the risk of influenza virus infection among household contacts of patients with influenza during the 2021-2022 influenza season with risk of influenza virus infection among household contacts during influenza seasons before the COVID-19 pandemic in the US. Design, Setting, and Participants: This prospective study of influenza transmission enrolled households in 2 states before the COVID-19 pandemic (2017-2020) and in 4 US states during the 2021-2022 influenza season. Primary cases were individuals with the earliest laboratory-confirmed influenza A(H3N2) virus infection in a household. Household contacts were people living with the primary cases who self-collected nasal swabs daily for influenza molecular testing and completed symptom diaries daily for 5 to 10 days after enrollment. Exposures: Household contacts living with a primary case. Main Outcomes and Measures: Relative risk of laboratory-confirmed influenza A(H3N2) virus infection in household contacts during the 2021-2022 season compared with prepandemic seasons. Risk estimates were adjusted for age, vaccination status, frequency of interaction with the primary case, and household density. Subgroup analyses by age, vaccination status, and frequency of interaction with the primary case were also conducted. Results: During the prepandemic seasons, 152 primary cases (median age, 13 years; 3.9% Black; 52.0% female) and 353 household contacts (median age, 33 years; 2.8% Black; 54.1% female) were included and during the 2021-2022 influenza season, 84 primary cases (median age, 10 years; 13.1% Black; 52.4% female) and 186 household contacts (median age, 28.5 years; 14.0% Black; 63.4% female) were included in the analysis. During the prepandemic influenza seasons, 20.1% (71/353) of household contacts were infected with influenza A(H3N2) viruses compared with 50.0% (93/186) of household contacts in 2021-2022. The adjusted relative risk of A(H3N2) virus infection in 2021-2022 was 2.31 (95% CI, 1.86-2.86) compared with prepandemic seasons. Conclusions and Relevance: Among cohorts in 5 US states, there was a significantly increased risk of household transmission of influenza A(H3N2) in 2021-2022 compared with prepandemic seasons. Additional research is needed to understand reasons for this association.


Subject(s)
COVID-19 , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Influenza, Human , Adolescent , Adult , Child , Female , Humans , Male , COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza Vaccines/therapeutic use , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/transmission , Pandemics/prevention & control , Pandemics/statistics & numerical data , Prospective Studies , Seasons , Family Characteristics , United States/epidemiology , Contact Tracing/statistics & numerical data , Self-Testing
2.
Influenza and other respiratory viruses ; 17(3), 2023.
Article in English | EuropePMC | ID: covidwho-2276321

ABSTRACT

Background US recommendations for COVID‐19 vaccine boosters have expanded in terms of age groups covered and numbers of doses recommended, whereas evolution of Omicron sublineages raises questions about ongoing vaccine effectiveness. Methods We estimated effectiveness of monovalent COVID‐19 mRNA booster vaccination versus two‐dose primary series during a period of Omicron variant virus circulation in a community cohort with active illness surveillance. Hazard ratios comparing SARS‐CoV‐2 infection between booster versus primary series vaccinated individuals were estimated using Cox proportional hazards models with time‐varying booster status. Models were adjusted for age and prior SARS‐CoV‐2 infection. The effectiveness of a second booster among adults ≥50 years of age was similarly estimated. Results The analysis included 883 participants ranging in age, from 5 to >90 years. Relative effectiveness was 51% (95% CI: 34%, 64%) favoring the booster compared with primary series vaccination and did not vary by prior infection status. Relative effectiveness was 74% (95% CI: 57%, 84%) at 15 to 90 days after booster receipt, but declined to 42% (95% CI: 16%, 61%) after 91 to 180 days, and to 36% (95% CI: 3%, 58%) after 180 days. The relative effectiveness of a second booster compared to a single booster was 24% (95% CI: −40% to 61%). Conclusions An mRNA vaccine booster dose added significant protection against SARS‐CoV‐2 infection, but protection decreased over time. A second booster did not add significant protection for adults ≥50 years of age. Uptake of recommended bivalent boosters should be encouraged to increase protection against Omicron BA.4/BA.5 sublineages.

3.
Influenza Other Respir Viruses ; 17(3): e13104, 2023 03.
Article in English | MEDLINE | ID: covidwho-2276322

ABSTRACT

Background: US recommendations for COVID-19 vaccine boosters have expanded in terms of age groups covered and numbers of doses recommended, whereas evolution of Omicron sublineages raises questions about ongoing vaccine effectiveness. Methods: We estimated effectiveness of monovalent COVID-19 mRNA booster vaccination versus two-dose primary series during a period of Omicron variant virus circulation in a community cohort with active illness surveillance. Hazard ratios comparing SARS-CoV-2 infection between booster versus primary series vaccinated individuals were estimated using Cox proportional hazards models with time-varying booster status. Models were adjusted for age and prior SARS-CoV-2 infection. The effectiveness of a second booster among adults ≥50 years of age was similarly estimated. Results: The analysis included 883 participants ranging in age, from 5 to >90 years. Relative effectiveness was 51% (95% CI: 34%, 64%) favoring the booster compared with primary series vaccination and did not vary by prior infection status. Relative effectiveness was 74% (95% CI: 57%, 84%) at 15 to 90 days after booster receipt, but declined to 42% (95% CI: 16%, 61%) after 91 to 180 days, and to 36% (95% CI: 3%, 58%) after 180 days. The relative effectiveness of a second booster compared to a single booster was 24% (95% CI: -40% to 61%). Conclusions: An mRNA vaccine booster dose added significant protection against SARS-CoV-2 infection, but protection decreased over time. A second booster did not add significant protection for adults ≥50 years of age. Uptake of recommended bivalent boosters should be encouraged to increase protection against Omicron BA.4/BA.5 sublineages.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Aged, 80 and over , SARS-CoV-2 , RNA, Messenger
4.
JMIR Res Protoc ; 11(7): e37929, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1875305

ABSTRACT

BACKGROUND: Assessing the real-world effectiveness of COVID-19 vaccines and understanding the incidence and severity of SARS-CoV-2 illness in children are essential to inform policy and guide health care professionals in advising parents and caregivers of children who test positive for SARS-CoV-2. OBJECTIVE: This report describes the objectives and methods for conducting the Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT) study. PROTECT is a longitudinal prospective pediatric cohort study designed to estimate SARS-CoV-2 incidence and COVID-19 vaccine effectiveness (VE) against infection among children aged 6 months to 17 years, as well as differences in SARS-CoV-2 infection and vaccine response between children and adolescents. METHODS: The PROTECT multisite network was initiated in July 2021, which aims to enroll approximately 2305 children across four US locations and collect data over a 2-year surveillance period. The enrollment target was based on prospective power calculations and accounts for expected attrition and nonresponse. Study sites recruit parents and legal guardians of age-eligible children participating in the existing Arizona Healthcare, Emergency Response, and Other Essential Workers Surveillance (HEROES)-Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) network as well as from surrounding communities. Child demographics, medical history, COVID-19 exposure, vaccination history, and parents/legal guardians' knowledge and attitudes about COVID-19 are collected at baseline and throughout the study. Mid-turbinate nasal specimens are self-collected or collected by parents/legal guardians weekly, regardless of symptoms, for SARS-CoV-2 and influenza testing via reverse transcription-polymerase chain reaction (RT-PCR) assay, and the presence of COVID-like illness (CLI) is reported. Children who test positive for SARS-CoV-2 or influenza, or report CLI are monitored weekly by online surveys to report exposure and medical utilization until no longer ill. Children, with permission of their parents/legal guardians, may elect to contribute blood at enrollment, following SARS-CoV-2 infection, following COVID-19 vaccination, and at the end of the study period. PROTECT uses electronic medical record (EMR) linkages where available, and verifies COVID-19 and influenza vaccinations through EMR or state vaccine registries. RESULTS: Data collection began in July 2021 and is expected to continue through the spring of 2023. As of April 13, 2022, 2371 children are enrolled in PROTECT. Enrollment is ongoing at all study sites. CONCLUSIONS: As COVID-19 vaccine products are authorized for use in pediatric populations, PROTECT study data will provide real-world estimates of VE in preventing infection. In addition, this prospective cohort provides a unique opportunity to further understand SARS-CoV-2 incidence, clinical course, and key knowledge gaps that may inform public health. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/37929.

5.
J Infect Dis ; 226(10): 1699-1703, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-1831183

ABSTRACT

We used daily real-time reverse-transcription polymerase chain reaction (RT-PCR) results from 67 cases of SARS-CoV-2 infection in a household transmission study, conducted April 2020-May 2021, to examine the trajectory of cycle threshold (Ct) values, an inverse correlate of viral RNA concentration. Ct values varied across RT-PCR platforms and by participant age. Specimens collected from children and adolescents had higher Ct values and adults aged ≥50 years showed lower Ct values than adults aged 18-49 years. Ct values were lower on days when participants reported experiencing symptoms, with the lowest Ct value occurring 2-6 days after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Adolescent , Humans , COVID-19 Testing , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction
6.
Pediatrics ; 149(3)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1703643

ABSTRACT

OBJECTIVES: Examine age differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission risk from primary cases and infection risk among household contacts and symptoms among those with SARS-CoV-2 infection. METHODS: People with SARS-CoV-2 infection in Nashville, Tennessee and central and western Wisconsin and their household contacts were followed daily for 14 days to ascertain symptoms and secondary transmission events. Households were enrolled between April 2020 and April 2021. Secondary infection risks (SIR) by age of the primary case and contacts were estimated using generalized estimating equations. RESULTS: The 226 primary cases were followed by 198 (49%) secondary SARS-CoV-2 infections among 404 household contacts. Age group-specific SIR among contacts ranged from 36% to 53%, with no differences by age. SIR was lower in primary cases age 12 to 17 years than from primary cases 18 to 49 years (risk ratio [RR] 0.42; 95% confidence interval [CI] 0.19-0.91). SIR was 55% and 45%, respectively, among primary case-contact pairs in the same versus different age group (RR 1.47; 95% CI 0.98-2.22). SIR was highest among primary case-contact pairs age ≥65 years (76%) and 5 to 11 years (69%). Among secondary SARS-CoV-2 infections, 19% were asymptomatic; there was no difference in the frequency of asymptomatic infections by age group. CONCLUSIONS: Both children and adults can transmit and are susceptible to SARS-CoV-2 infection. SIR did not vary by age, but further research is needed to understand age-related differences in probability of transmission from primary cases by age.


Subject(s)
COVID-19/transmission , Contact Tracing , Family Characteristics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Asymptomatic Infections , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prospective Studies , Risk Factors , Tennessee/epidemiology , Wisconsin/epidemiology , Young Adult
7.
Influenza Other Respir Viruses ; 16(4): 607-612, 2022 07.
Article in English | MEDLINE | ID: covidwho-1703642

ABSTRACT

Reduced COVID-19 vaccine effectiveness (VE) has been observed with increasing predominance of SARS-CoV-2 Delta (B.1.617.2) variant. Two-dose VE against laboratory-confirmed SARS-CoV-2 infection (symptomatic and asymptomatic) was estimated using Cox proportional hazards models with time-varying vaccination status in a prospective rural community cohort of 1266 participants aged ≥12 years. Between November 3, 2020 and December 7, 2021, VE was 56% for mRNA COVID-19 vaccines overall, 65% for Moderna, and 50% for Pfizer-BioNTech. VE when Delta predominated (June to December 2021) was 54% for mRNA COVID-19 vaccines overall, 59% for Moderna, and 52% for Pfizer-BioNTech.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Prospective Studies , RNA, Messenger , Rural Population , SARS-CoV-2/genetics , Vaccine Efficacy , Wisconsin/epidemiology
8.
JMIR Res Protoc ; 2021 May 26.
Article in English | MEDLINE | ID: covidwho-1295585

ABSTRACT

BACKGROUND: The Arizona Healthcare, Emergency Response, and Other Essential workers Study (AZ HEROES) aims to examine the epidemiology of SARS-CoV-2 infection and COVID-19 illness among adults with high occupational exposure risk. OBJECTIVE: Study objectives include estimating incidence of SARS-CoV-2 infection in essential workers by symptom presentation and demographic factors, determining independent effects of occupational and community exposures on incidence of SARS-CoV-2 infection, establishing molecular and immunologic characteristics of SARS-CoV-2 infection in essential workers, describing the duration and patterns of rRT-PCR-positivity, and examining post-vaccine immunologic response. METHODS: Eligible participants include Arizona residents aged 18-85 years who work at least 20 hours per week in an occupation involving regular direct contact (within three feet) with others. Recruitment goals are stratified by demographic characteristics (50% aged 40 or older, 50% women, and 50% Hispanic or American Indian), by occupation (40% healthcare personnel, 30% first responders, and 30% other essential workers), and by prior SARS-CoV-2 infection (with up to 50% seropositive at baseline). Information on sociodemographics, health and medical history, vaccination status, exposures to individuals with suspected or confirmed SARS-CoV-2 infection, use of personal protective equipment, and perceived risks are collected at enrollment and updated through quarterly surveys. Every week, participants complete active surveillance for COVID-19-like illness (CLI) and self-collect nasal swabs. Additional self-collected nasal swab and saliva specimens are collected in the event of CLI onset. Respiratory specimens are sent to Marshfield Laboratories and tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (rRT-PCR) assay. CLI symptoms and impact on work and productivity are followed through illness resolution. Serum specimens are collected every 3 months and additional sera are collected following incident rRT-PCR positivity and after each COVID-19 vaccine dose. Incidence of SARS-CoV-2 infections will be calculated by person-weeks at risk and compared by occupation and demographic characteristics and by seropositivity status and infection and vaccination history. RESULTS: The AZ HEROES study was funded by the Centers for Disease Control and Prevention. Enrollment began July 27, 2020 and as of May 1, 2021 a total of 3,165 participants have been enrolled in the study. CONCLUSIONS: AZ HEROES is unique in aiming to recruit a diverse sample of essential workers and prospectively following strata of SARS-CoV-2 seronegative and seropositive adults. Survey results combined with active surveillance data on exposure, CLI, weekly molecular diagnostic testing, and periodic serology will be used to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infection, assess the intensity and durability of immune responses to natural infection and COVID-19 vaccination, and contribute to the evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT: DERR1-10.2196/28925.

SELECTION OF CITATIONS
SEARCH DETAIL